翻訳と辞書 |
Spectrum (homotopy theory) : ウィキペディア英語版 | Spectrum (topology) In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. There are several different constructions of categories of spectra, any of which gives a context for the same stable homotopy theory. ==The definition of a spectrum==
There are many variations of the definition: in general, a "spectrum" is any sequence of pointed topological spaces or pointed simplicial sets together with the structure maps . The treatment here is due to Adams (1974): a spectrum (a CW-spectrum) is a sequence of the suspension as a subcomplex of . For other definitions, see symmetric spectrum and simplicial spectrum.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Spectrum (topology)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|